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ABSTRACT

This thesis preéents the application of EIGENVALUE
SENSITIVITY AMALYSIS5 and SINGULAR VALUE ANALYSIS tg the
contral of a SEA-SKIMMING supersonic missile,in the vertical
plane.

The study is divided in four basic parts:

a) The developmert of the mcdel.
b) EIGENYALUE SENSITIVITY ANALYSIS with re2spect to the
variatien of the aerodynamic parameters of the

autopilot/asirframe of the missile.

c) Analysis oaof the time response with respect tc the
variation of the aerodynamic parameters.

d) Robustness analysis and improvement of the syctem,
using the SINGULAR VALUE ANALYSIS.

All the anpalysis 1is based 1in results of simulatian
programs using the software available at the NAVAL

FOSTGRADUATE SCHOOL.
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I. INTRODUETION

The majority of tactical missiles used against surface
targets are SEA-SKIMMING and fly as close as possible to the
surface of the water in order to make difficult the
detection and reaction of the enemy.

This work addresses the problem of analysing the design
of the altitude control system of a supersonic SEA-SKIMMING
missile in both aspects of SENSITIVITY and ROBUSTNESS, with
respect to the variations of the aerodynamics parameters.

Those variations can develop from uncertainties in the
model as well as from changes in the flight conditions of
the vehicle.

The SENSITIVITY analysis makes it possible to verify,
for a given model which parameters are more important for
the desired flight path.

The ROBUSTNESS analysis has the objective of verifying
if the system could be affected by perturbations or noise
and will be the base on calculations of modified feedback
gains which are capable of producing the desired flight of
the missile despite perturbations.

The contents of the different sections are as follawing:

Section Il presents the model and the state equations of
the system as well as the calculations to complete the chain

of control of the missile, considering the restrictions of

12




the SEA-SKIMMING scenario, where the altitude control system
cannot tolerate any overshoot to avoid that the missile hits
the water.

Section II1 develops the SENSITIVITY ANALYSIS taking

into consideration the variation of the eigenvalues and time
response of the system of state equations for variations of
the aerodynamic parameters in a range of +25% of the

ariginal value.

In section IV is described the ROBUSTNESS ANALYSIS based
upon the minimum singular value of the return difference
matrix as function of the frequency; section V introduces a
design technique using optimization routine in order to
obtain a "complete robust" solution and section VI presents

the final conclusions.

13




I1. MATHEMATICAL MODEL OF THE MISSILE

The work assumes a SEA-SKIMMING missile with the flight
in the vertical plane according to the path shown in Figure

II.1.

.....................................................................................................................

ALTITUDE(FEET)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0

1

....................................................................................................................

0.0 2.5 5.0 7.5 16.0 12.5 15.0 1’:‘.5 20.0
TIME(SEC)

Figure I1.1 - Missile Trajectory in the Vertical plane

The missile is assumed to fly at constant velocity,at
150 ft, when it is commanded to a final altitude of 30 ft.

Only the pitch channel will be analysed.
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A. THE MISSILE

The missile will be considered as presented by Arrow
(Ref.1]J. This model has been selected in order to avoid
classification problems. The geometry as well as its
characteristics are presented in Appendix A.

The states that were considered in our model are defined

in Table I as well as the relevant aerodynamics parcmsters.
In the Figure I1.2 we have the schematic representation
of the wuncoupled pitech control chain of the missile,

neglecting the yaw and roll movements;

H
-
n ] l{t) vit) —— H() ]
zcb+ zc . - - A - [10(s+0. 53] 2
;_ s - J i J + (s+50.0)
)
- F]
- F

E f

-l b §

Figure 11.2 - Block Diagram of the Pitch Control Chain of
the Missile.

where

e "bias" acceleration;
e ~ commanded acceleration;
U} ~ achieved acceleration;

15




v(t) - velocity;
H(t) - altitude;

HS - commanded altitude.

The Transfer Function G(s) represents the missile itself
and the other blocks are the controller. The input to this
block will be the “commanded” acceleration and the output
will be the achieved acceleration.

The commanded acceleration comes from the feedback of
the states of the controller (compensated state, velocity
and altitude) added to a "bias" acceleration.

In the diagram of Figure II.3, we have a caomplete
representation of the system with the states used in
modelling our missile.

The "STATE ERUATIONS" which represent our system are the

following:

X, = =150.0 x - 2,646.66 x o~ 705.75 x,

X,= 1.353 x_ + Xy = 1.353 0, + 1.334 H_

X = —6.572 X, =5 x  + 6.572 9,  -6.481 H_

X,= —44.332 X = 59.109 x

X = x, - 0.1482 x _ - 0.0395 x (II.1)

x = —188.4 x, + 188.4 x

16




X_.= =0.4608 x - 2.231 x. - 0.3406 xg + 2.231 x, +

7 1 2
~15.0949 x - 20.13 x, - 0.143 x_ + 0.4608 1__
- 0.4544 H
s

Xx.= -50.0 x_ — 495.0 x_ + 495.0 H

[ 8 1 4 [
X'= xxo
X o~ -17.644 xs - 4,705 x6

This system of equations can be represented in matrix

form, where we have:

X =AX + Bu
[ -150 o &) 0 2,6486.66 -705.74 O 0 0] 0 ]

1.35 0 1.0 o 0 0 o 0 0o o
-6.5 0o -5.0 0 o 0 0o 0 0] 0]
0 o) 0] 0O -44.33 -59.11 o o 0 o
A= 0 o) 0] 1.0 -0.15 -0.04 0 o) 0 o
0 o 0 0o 0 -188.4 188.4 O 0o o
-0.46 -2.2 -3.4 2.2 -15.1 -20.13 -0.14 O o 0]
o) o) 0 0 o) 0 0 -50. -495 ©

0 ) o 0 0 ) o o o 1

0 0 0 0 -17.64 ~-4.71 o 0 o o)

17




- 0 0 .
-1.353 1.334
&.572 -6.481
0 0
0O 0
B = 0 0
(o) 0
0.441 -0.454
o 495.0
s o o .
u=-F x
0] 0] o o (0] 0 0 0.049 0.98615 1.404
F =
0O 0] 0 0 8] 0 8] o) 0 0
The vector input "u" has two components
e ~ the commanded acceleration; and
HS - the desired altitude.
The input % is considered as parts; one
carresponds to the feedback of the states (from the

controller) and another is the "bias" acceleration of 1g.

18




TABLE I

DESCRIPTION OF THE SYSTEM STATES AND
AERODYNAMIC COEFFICIENTS

X seessnssaveacsasancansascaas Filtered acceleration

-s-.. acceleration compensator
««ec.. acceleration compensator
«cssuee- Q — pitch angular rate
cecsenssnss & — angle of attack

ce s sp— pitch tail incidence

6
X, ............spc— cummanded pitch tail incidence
g eseenscsnnacscannans X _~ controller caompensator
Xy serescecsaccacearaansaanananaaas Ht) - altitude
X g ""=ccctseccecscccnccannnsoncnns vi(t) - velocity
AERODYNAMIC COEFFICIENTS
Cm« slope of curve of pitching moment coefficient
Cmspchange in Cm per degree pitch control incidence

CNdslope of curve of

c change in C

Np per

N

normal force coefficient CNx &

degree pitch control incidence

19
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Figure II1.3 - The Missile Model
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The model can be separated in twao main parts; the

CONTROLLER and the AUTOPILOT/AIRFRAME.

B. THE CONTROLLER

The controller was developed based in the procedure
introduced by Dowdle [Ref.Z].

The missile was considered as a point mass and,
therefore the altitude as function of time is calculated by
double integration of the achieved acceleration.

The controller was devel oped without take in
consideration the missile itself, i.e., the transfer
function G(s) in Figure 11.2 was assumed as "unity".

According to the [Ref.2], this procedure is valid if the
bandwidth of G(S) is larger than the crossover frequency of
the controller.

Due to the constraints of the scenario, the controller
has to be designed in such way that no overshoot will be
tolerate. Further requirements are that the angle-of-attack
and the acceleration, have to remain below a certain level.

The controller are responsible for the commanded
acceleration by feedback of its states.

The technique used to solve the feedback problem was the
LINEAR QUADRATIC STATE FEEDBACK REGULATOR. This solution has
a large stability margin with respect to phase variations,

as well infinite gain margin.

21




The "cost function" to be minimized is the following:

J = J { th) Q z2(t) + urt) R utt) > dt (II1.2)
0

In Figure 1II.4 we have the schematic representation of

the CONTROLLER.
H
s
ﬂz(t) Vt) ~————— H()
1 1 +
—3» I G (s) b—_
s =3 c

in

Its

we

Figure I1.4 — The Controller

The LEAD compensator indicated in the controller is used
order to improve the transient response characteristics.
transfer function is :

K¥*(s+w )
z

Gc(s) =
(s+w )
p
where K = 10.0
wz= 0.5 rad/sec

w = 50.0 rad/sec

In order to have the state equations of the CONTROLLER,

draw in FIGURE 1II.5 1its signal flow graph using the

22




adequate transformation of the compensataor and showing the

states that will be feedback.

H
+
-1
nz(t) 1 1/s v(t) 1/s Ht) 1 1
° B ° - ©

k
Figure II.S5 Signal Flow Graph of the Controller
The state vector is defined as:
x(t) = [ xét) (H(t)—Hs) vit) 1 T (I1.2)

In the Figure II.5 the states of the controller are
represented as indicated in Table I.

From the diagram, we have the following STATE EQUATIONS:

(I1.3)

23




The state matrices are:

w K{w_— w_) (0]
p z
A = (0] O 1
o) (o] o)
(0]
B = (0]
i
D = L 1 KO 1

Since we consider to feedback all the states, let in

equation II.1

@ = I (Identity)

and R = 0.04

Using the OPTSYS program to solve that OPTIMUM CONTROL

problem, the following feedback gains were obtained;

n
]

0.049

m
[[}

0.98615

m
[}

1.4044

correspondents to the feedback of the states indicated

in Figure II1.5.
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C. THE AUTOPILOT/AIRFRAME

The controller was developed assuming the transfer
function of the Autopilot/Airframe as unity.This assumption
implies that the achieved acceleration is equal to the
commanded acceleration; however, they are different due to
the aerodynamic of the missile.In order to take that in
consideration we have to introduce the autopilot/airframe
model .

Normally, the sea-skimming is a SKID-TO-TURN missile
(turns instantaneously), but due to problems of
classification we have used for our Sea—-—-Skimming model the
Autopilot given by Arrows ([(Ref.1]1 for a BANK-TO--TURN
missile (has to bank in order to turn) that was designed to
fly at 30,000.0 ft instead of sea level.

Take in consideration that the main objective of this
work 1is to establish a procedure for sensitivity and
robustness analysis and that we are studying only the
vertical mavement of the nissile uncoupled of any other
movement ,we consider that the approximation is useful.

In Figure 11.6 we have the block diagram of the missile,
representing the plant without the controller.

The state equations derived from this diagram are on the

Appendix A.
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D. THE TIME RESPONSE

Using the software CONIROLS, the system represented by
equations (II.1) was simulated and the time response for the
altitude, velocity, acceleration and angle of attack were
obtained.

The altitude is in Figure I]I.7 and we can see that the
missile arrives at the desired altitude in about 10 seconds.

No overshoot is shown and a small steady-state error is
presented characterizing our Type O system.The steady-state
error was less than 35%.

The angle—-of-attack ,reproduced in Figure 11.8, varies
between 3.7 deg and -1.2 deg satifying the condition
required by the airframe, as indicated in [Refs. 1 and 21].

The acceleration 1is in Figure II1.9 and the velocity is
in Figure 1I1.10 representing a smooth behavior of the
system.

In the next chapter will be presented the Sensitivity

Analysis using the developed model.

27
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ORIGINAL SYSTEM
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Figure 11.8 - Angle-of-Attack(deg) vs. Time(sec)
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ORIGINAL SYSTEM
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ITI. SENSITIVITY ANALYSIS

A. INTRODUCTION

The objective of the SENSITIVITY ANALYSIS is to
analyse how the behavior of the system 1i1s affected by
variations of the aerodynamic parameters.Those variations
are due to uncertainty of the design and/or problems ocurred
during the flight.

From the developed model we can see that the important

parameters to our system are C _ , C

Mot C and CN&’ as

Nax' “mg
described on TABLE 1.

The variations could be interpreted as perturbations in
our STATE EGQUATION SYSTEM (A-matrix) and the analysis,
basically, take 1into consideration the change in the poles
positions due to change in the parameters.

As we have feedback, we replace the A matrix by the

augmented A-matrix( Aa =A-~-BF ).

The sensitivity of a matrix where the elements are
time—-invariant,can be verified in different ways. Among
those procedures, some are enumerated below.

First, using the method introduced by Golub and Van Loan

(Fef.31 we can analyse the matrix to verify how it is "ill-

conditioned”; where an "ill-conditioned" matrix means a very

sensitive system.
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In order to accomplish the analysis, we have to
calculate the "condition number". It is defined as:

. -1
K(Aa) =1 A_Il 11 A I

a a
where
11 A_ll is the norm of augmented A and
-1
11 Aa Il is the norm of inverse augmented A

The condition mumber depends upon the considered norm
but it can be proven that the condition of the matrix will
be the same for all norms.

When we use the 2-norm one has

(A)
-_a

(A)
- a

K (A) = (ITI.1)

-]

where s (A) and g (A)) are the maximum and minimum

singular value of the A-augmented matrix, respectively.

Calculating the condition number for the different
values of the parameters it is possible to establish how the
sensitivity of the system changes when there are changes in
some elements of the state matrix.

The problem of this kind of analysis is that we can nat
verify the sensitivity of the system with respect to a
specified element of the state matrix but only the
sensitivity of the overall system.

In Frank [Ref.4], we have another method where the

analysis 1is done based upon the STATE SENSITIVITY EQUATIONS
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that could be characterized in time domain, fregquency domain
orin terms of a performance index.

The basic idea is to define "sensitivity functions" and
analyse the behavior of the system by those functions.

The analysis starts with the system defined by:

|Xeo

= fix,t,u,x) (II1.2)
where:
- % represents the state vector;
-t is time ;
- u is the input vector ; and
- « represents a vactor of the different parameters.
If o is changed by A« (some perturbation) and using
Taylor ‘s expansion,we have:
ax (t,00) =ZZ_§5_ A . (ITI.3)
du Ido J

The subscript «® indicates that the partial derivative

is taken at the nominal parameter values.

The partial derivative is called the trajectory vector (

) with respect to the j!:—tl parameter and has the same

1>

dimension as the state vector.

The components of that vector are defined as the

TRAJECTORY SENSITIVITY FUNCTION.

o

A (b ) = —xlEa) (I11.4)
1) -0 auj o
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The equation III.4 represents the partial derivative of

the igﬂ state with respect to the jsﬁ parameter. Assuming we

have n states and m parameters, it will be possible to form
anx m matrix called TRAJECTORY SENSITIVITY MATRIX (III.S).

The matrix is also called the JACOBIAN MATRIX.

[ A
ax1 ax1
Fo R
1 m
A = . . (I111.5)
axn axn
ad1 dat
| J

The change in the behavior of the system will be
determined by:

-
ax = A (t,a) Ax =z AL Ax, (III.6)
= =o' "= j ]

j=1

The analysis 1is based in how the sensitivity function
changes when we change the parameters. The result could be
visualized by plotes of A as function of time, as states of
the expanded system.

Finally, we consider the EIGENVALUE SENSITIVITY
presented by Porter & Crossley [(Ref.S5l].

This latter procedure was choosen to be used in the
analysis of this thesis, where the sensitivity of the sistem

is related to the variation of the eigenvalues of the
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augmented matrix (Aa = A - B F) with respect to the

variation of the parameters.
In order to further develop our analysis, the concept of

MODAL ANALYSIS will be introduced.

B. THE MDDAL ANALYSIS

The concept is based in generating the input vector of a
system by linear feedback of the state vector in such way
that the prescribed eigenvalues are associated with the
dynamic model of the resulting close-loop system.

As an example, let us assume a scalar system:

X = a x(t) + b ult); (I11.7)

if ult) = Q0 ====> x = Xo exp (at)

where exp (at) defines the "mode” cf the <vetem.
If a £ 0 the system 1is stable and if a > 0 the system is
unstable.
Assuming g as the feedback gain, we have:
u(t) = g x(t) (II1.8)
Inserting the value of u from equation III.B in equation

I11.7:

% = (a + b g) x(t) (I11.9)
and, solving for x(t):
x(t) = %x(0) expf(a + bg)t]

Now the mode of the system is defined by the exp(a+bg).
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When we have a state vector, the system is represented

by
Xx =Ax +Bu (I11.10)
Considering
u=-F x
and assuming all the states as observable and

controllable, the substituting value of u in equation

(III.10), we have

x = (A - BF) x or (ITI.11)

X
0
D

X

The precise nature of the free motion of the continuous
time system following any disturbance can be described in
terms of eigenvalues and eigenvectors of the augmented plant

matrix (A_).
a
Assuming Aa has n distinct eicenvalues (Ai,xe,...,xn);

then it also has n corresponding linearly independent

eigenvectors ut,uz,...,un such that

AL uy = A ugp i=1,2,...,n0 (I11.12)

Using the calculated eigenvalues and eigenvectors we can

write the modal matrix of Aa as:
U= Eu1 Uy ees un]

where each column of U is the eigenvectors of Aa.

Based in the modal matrix U, the equation (III.12) could

be written as
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Aa Uu=auU (II1.13)

with A as a diagonal matrix of the eigenvalues.

The matrix A is obtained from equation (III.13):
u A_ U = aAa (I11.14)

In addition to the eigenproperties of A the

a!
carresponding properties of its transposed matrix (Aé) play

an important role in the modal analysis.

The matrix Aé has the same eigenvalues of Aa’ but a

different sets of eigenvectors.It can be represented as

A v. = A. v.s J = 1,2,...,n

a j j 3’
where vj represents the eigenvectors of A;.

In [Ref.51 it is shown that

viu, = u] v, = § . (II1.16)
where sij is the Kronecker delta; i.e.

&ij = 1 if 1 = j

and 8ij = Q if 1 #

Thus in matrix form
v =1 (I1I1.17)

where the collumns of V are the vectors vy
Using the modal matrix of Aa and introducing a new state

vector y(t), we have:

x(t) = U y(t) (III.18)
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The derivative of both sides, gives us:

Xit) = U y(t) (II1.19)

with x(t) = A_x (t) (I11.20)

Combining equations (III.18),(III.19) and (111.20), we

have:

y=ulta uyw

and using the equation (III.14),

yit) = A y(t) (I11.21)

Because the matrix A 1is diagonal the equations are

uncoupled and the solutions of the system represented by

(III.16) are given by
yi(t) = yi(O) exp(xit) (I11.22)

Aplying equation I111.18,
xi(t) = [u1 U, =« un] Y,

(I11.23)

which implies that

x{t) = u1y1(0) exp(Alt) + u2y2(0) exp(xzt) + ...

Taking the value of y(t) in equation (III.18),

vit) = Ul (I11.24)
Using equation (III.17),
y;(0) = v x(0) (111.25)
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Combining equations (III.23) and (III.25):

x (t) =Z§ x (0) uivi exp(xit) (I1I.26)

Equation III.26 shows that the system represented by

(III.8) has 1its modes described by the eigenvectors of Aa
and 1its transpose and eigenvalues of Aa matrix. Also, in

order to have the system stable, x(t) —--> 0 as t -——> o ,
which happens if and only if

Re xi < 0, for all the values of i

In the Modal Control [Ref.S] all this procedure is shown
for the case when some of the eigenvalues are equal which
does not apply to our system.

As the role of the eigenvalues is so important, we can
verify how the sensitivity of our controll system by
analysing the change in the eigenvalues of the matrix A or
the augmented A for the close loop system when any element
is changed.

In order to avoid calculating the new eigenvalues for
each different A, the equation (III.26) can be used to find

approximated values that can be analysed analytically.
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C. EIGENVALUE SENSITIVITY

In our system we consider the change in the elements of
the matrix due to variations in the aerodynamic
coefficients.

Basically, we concerned with the eigenvalues that are
changed in the direction of the right hand plane,making the
system unstable or affecting the time response.

The result of the analysis could be plots or tables
relating the eigenvalues with the variation of the
parameters.

For each change in the parameters, we have a new matrix.

Approximations to the eigenvalues associated with the
different plant matrices in the vicinity of the original one
could be used without having to compute the eigenvalues of
each new matrix.

We describe the approach presented in the reference
fRef.5]1 applying the "first order eigenvalue sensitivity” to
the change of one of the parameters and doing the complete
analysis with the calculated eigenvalues.

1. First-order Eigenvalue Sensitivity

From equation III.11, we have:
L.
x(t) = A_ x(t)
a

Let’'s assume

A_= [ a ]
a kl
where a ., is any element of Aa.
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Differentiating equation (III.12) with respect to

akl indicates that
A u. + A dui = i u. + A dui (I11.27
3a, . 2a_. da,, ! 3a,
kl kl kl kl

multiplying (III.27) by v{ then gives

v, 9A u. + v{ A dui = v. Al u, + A, v{ dui

i i
aakl aakl aakl aakl

As v{ A is equal to Ai v{ y we have

v, af u, = vi aAi u,
aakl aakl

Which reduces to the set of equations

Ai = v, (k) u (1) ;3 i=k=1=1,2,...,n (II1.28)

aakl

Due to

am = a

aakl

ik ajl

In equation (II11.28), Vi(k) and ui(l) represent the

kEﬂ element of vi and the IEE element of U, respectively.

Those coefficients may be considered as the
elements of a set of n eigenvalue sensitivity matrices.

The new eigenvalues (Ai) of the altered matrix,

when the element a is changed will be calculated as

k1
~ a A,
Ai—Ai-t-aalAakl
k1
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When we have more than one parameter altered, the
linearity could be used and the +final eigenvalue will
obtained from the summation of the sensitivity coefficients

multiplied by the respective change in the coefficients.

As an example of this procedure, let’'s consider our

system, chanqing the value of CmspSUCh that

a = 0.02

Consp

When C is changed as specified, the following

m 5p
elements of the augmented-A matrix of the state equations

presented in the Chapter II are changed:

Aa(4,6)= Aa 14.778

46

5.035

A_(7,6):  aa,,

The eigenvalues and eigenvectors of the augmented A
matrix and of its tranpose were calculated using the program

Matlab.
a) Eigenvalue A, B
A, = -159.75 + j 18.85

1

A At =[v1(4) ui(b)] A a,. + [v1(7) ui(b)] A a

76
v1(4) = -0.0148 - j 0.003%9

v1(7) =1

ux(b) = 0.014 - j 0.027

A, = -159.815 + j 18.85

43




b) Eigenvalue Ay s

A, = —-159.815 - j 18.85 (complex conjugate of Az)

c) Eigenvalue Ay

A, = -50.0

A, = IV (4 u (&)1 aa,, + [v,(7) u,(&] aa_,
v (4) = 0.0003

v, (7) = 0.0039

u (&) = ~0.001

N, = -49.9999g

d) Eigenvalue A, @

L = -8.61 + j 7.91

ax = [v‘(4) u, (61 da, + [vq(7) u, (6)1] sa L,
v, (4) = -0.1667 - j 0.1322

ve(7) =1

u“(b) = ~0.0334 - j 0.132

A = -8.95 + j 7.6355

e) Eigenvalue A ®
A = -8.95 - j 7.6335

s

f) Eigenvalue A,
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[v (4 u (&)1 aa, + [v (7) u (&)1 aa_
0.1718 - j 0.0161
-0.5737 + j 0.1689

0.01 + j 0.0363

-1.846 + j 2.05

g) Eigenvalue A, 8

~
A7

-1.846 - j 2.05

h) Eigenvalue Ay 3

_2. 71

[v8(4) uo(b)] Aaws + [v8(7) u.(b)] Aave
0.1741

=0.6597

—0.03%96

i) Eigenvalue Ay ®

_0¢5
[V,(4) u,(b)] A.a“.6 + [V,(?) uy(b)] Aa76

0.1718 + ) 0.016
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v,(7) -0.5737 - j 0.1689

u,(b) = 0.01 - j 0.03463

A, = —-0.4741

j) Eigenvalue Ao ¢

-0.14

A1.0

AN o, T [V10(4) uxo(b)] sa,  + [v10(7) uio(b)] Aa_

v1°(4)= 0.1741

v1°(7)= -0.6597

u1°(6)= -0.03%96

”~

Aio = -0.1104

For the anal ysed parameter, our system is
unsens’ tive, taking in consideration the small differences
between the new and original eigenvalues.

Repeating this procedure for all different parameter
values will give us the approximation of the new eigenvalues
and that can be helpfull in a qualitative analysis of what
parameter has more effect over our model.

As we want to verify the effect in the time
response and due to the Software available the analysis will

be done completely with the calculated exact values.
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2. Exact Eigenvalues

Using the Controls Program, we will verify the variation
of the eigenvalues of the augmented A matrix ( A - FB) with
respect to the variation of the parameters and by simulation
we analyse the effects on the time response.

At the end of the analysis we compare the results of the
example used for the first order approximation with the
exact values that were calculated.

As reference, the eigenvalues of the original system

are:

A, = -159.746 + j 18.979

r, = -159.746 - j 18.979

A, = —49.9992

A, = —B.60697 + j 7.90968
A, = —B.60697 - j 7.90968
A, = -1.81854 + j 2.0238

A, = -1.81854 - j 2.0238

A, = —2.70266

A, = —0.503819

A, = —-0.143073
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Each aerodynamic coefficient, that takes part of the

considered model was changed up to +25% and the eigenvalues

of the perturbed system matrix (A-augmented) were analysed
as well as the TIME RESPONSE of the system .

a. C
Mot

On TABLE II we have the eigenvalues related to the

considered values of Cmdand as we can see, with exception

of the 7£E eigenvalue, the changes are small and the system
is pratically insensitive to that variation.

The time responses are shown in Figures III.1, II1I.2,III.3
and III.4 .

- Angle-~of-attack (Figure III.1) - changes in the same
direction of Cm« with the minimum value changing about

0.5 degrees in the negative direction. The maximum
value stays almost constant

— Acceleration (Figure III.2) - the change was less than

S ft/sec2 either the maximum or the minimum values;
- Velocity (Figure III.3) - almost the same ; and

- Altitude (Figure 11I.4) — almost the same.

b. C
m§p

The change in the eigenvalues are on TABLE III ; the
time response is on Figure III.S5,III.6,II1.7 and III.8.
The variation of the eigenvalues are slightly higher

with changes in cmaprt the system stays stable and the time

response has a small variation.
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~ Angle-of-Attack (Figure 1III.S) - The minimum values
increases negativelly about 0.5 degrees but in the
contrary direction of the coefficient, i.e., increasing
the value of Cm&p negativelly, the minimum was smaller;

~ Acceleration (Figure III.6) - small changes;
~ Velocity (Figure III.7) - small changes;

~ Altitude (Figure I111.8) - pratically the same.

C. CN«

The change in the eigenvalues are on TABLE IV and the
time response is on Figures III.9,III1.10,1II1.11 and III.12,

The changes in the eigenvalues are small but the effect

on the time response is more sensible, mainly on the angle-—

of-attack.
~ Angle-of-Attack (Figure III.9) - the maximum and the
minimum increase 1.0 degree in the positive and
negative directions, respectivelly;
~ Acceleration (Figure III.10) -~ maximum changes of 10%
in the negative direction (minimum) and 204 in the

positive direction (maximum).These values are smaller

when we increase the value of CNa H

-~ Velocity (Figure III.11) - small changes;

~ Altitude (Figure II11.12) - does not change.

d. CN&p

The change in the eigenvalues are on Table V and the

time response are on the Figures III.13,II1.14,I11.15 and
I11.16

- Angle-of-Attack (Figure 1I1I1.13) - Changes almast 1.0

degree with the maximum and minimum increasing when the

value of the parameter increases;
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Acceleration (Figure III.14) - the maximum increases
with the value of the parameter;

Velaocity (Figure II11.13) - pratically the same for all
the considered values of the parameter;

Altitude (Figure III.16) - constant.




TABLE 11

c — SENSITIVITY
Mo

ot -0.04 -0.05 ;
-159.741 + j 18.9843 -159.743 18.9816 ;
-159.741 - j 18.9843 ~159.743 18.9816 |
~49,9992 -49.9992 ﬁ
-8.55822 + j &.37i30 -8.56386 7.18736 !
-8.55822 - j 6.37130 -8.56386 7.18736
-2.31740 + j 2.95574 -2.14117 2.43275
-2.31740 - j 2.95574 -2.14117 2.43275
-1.79944 -2.14200
-0.51650 -0.510282 !
-0.14304 -0.14306 é
o -0.07 -0.08 '
-159.748 + j 18.9762 -159.751 18.9735 %
-159.748 - j 18.97&2 -159.751 18.9735 f
| —49.9992 -49.9992 :
 _8.66197 + j B.55389 -8.72178 9.14021
-8.66197 + j 8.55389 -8.72178 9.14021
-1.47981 + j 1.81088 -1.22077 1.70081
-1.47981 - j 1.81088 -1.22077 1.70081
~-3.27131 -3.67125
-0.49779 -0.49148
-0.14308 -0.14308
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TABLE III
Copgp™ SENSITIVITY
Conso ~0.06 -0.07
~162.604 + j 16.7131 -161.200 + j 17.9141
~162.604 - j 16.7131 -161.200 - j 17.9141
-49.9992 -49.9992
~-5.74603 + j B.B&120 -7.13033 + j 8.50992
-5.74603 - j B.86120 -7.13033 - j B.50992
-1.24694 + j 1.66681 -1.54230 + j 1.80335
~1.24694 - j 1.66681 -1.54230 - j 1.80335
~3.86370 -3.30548
-0.49103 -0. 49828
-0.14311 -0.14309
Consp -0.09 -0.10

-158.243 + j 19.9192 -156.678 + j 20.7492
-158.243 - j 19.9192 -156.678 - j 20.7492
-49.9991 -49. 9990
-10.1621 + j 6.98960 -11.7920 + j S5.53519
-10.1621 - j 6.98960 -11.7920 - j 5.53519
-1.47981 + j 1.81088 ~2.03752 + j 2.55411
-1.47981 - j 1.81088 -2.03752 - j 2.55411
-2.27254 -2.02276
-0.50786 -0.51120
-0.14307 -0.14306
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TABLE IV

Chy ~ SENSITIVITY
Cr 0.13 0.14
| -159.750 + j 18.9895S ~159.748 + j 18.9842
-159.750 - j 18.9895 ~159.748 - j 18.9842
~49.9992 ~49.9992
-8.76667 + j 8.27012 ~8.68784 + j B.09494
| |-8.76667 - s B.27012 ~8.68784 - j 8.09494
| | -1.18629 + j 1.74321 ~1.47163 + j 1.84903
~1.18629 - j 1.74321 ~1.47163 - j 1.84903
-3.63456 ~3.22775
| | -0.48878 ~0. 49663
| -0.14314 ~0.14310
| Ch 0.16 0.17
| -1s9.788 + 5 18.9736 ~159.741 + j 18.9683
 159.748 - ; 18.9736 ~159.741 - j 1B8.9683
~49.9992 ~49.9992
~8.52441 + j 7.71274 -8.44077 + j 7.50213
| -8.52881 - j 7.71274 -8.44077 - j 7.50213
-2.15317 + j 2.32249 -2.40105 + j 2.67918
-2.15317 - j 2.32249 ~2.40105 - j 2.67918
| -2.20610 ~1.88565
| _o.51041 ~0.51651
-0.14305 -0.14303
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TABLE V

Cygp~ SENSITIVITY
Cngp 0.02 0.03
-159.004 + j 12.1138 -159.748 + j 18.9842
f -159.004 - j 12.1138 -159.748 - j 18.9842
E -49. 9994 -39, 9992
? ~9.37545 + j 7.11519 -8.68784 + j 8.09494
| ~9.37545 - j 7.11519 ~8.68784 - j B.09494
; ~2.24432 + j 2.56109 ~1.47163 + j 1.84903
é ~2.24432 - j 2.56109 ~1.47163 - j 1.84903
| -1.98723 ~3.22775
|
-0.51356 -0.49663
~0.14304 -0.14310
5 Cnso 0.05 0.06
~160.106 + j 21.5632 -160.459 + j 23.8437
-160.106 - j 21.5632 -160.459 - j 23.8437
~49.9990 -49. 9988
: -8.25204 + j 8.25703 -7.91449 + j 8.57438
-8.25204 - j B8.25703 -7.91449 - j B.S57438
-1.57370 + j 1.85345S -1.35009 + j 1.75196
-1.57370 - j 1.85345 -1.35009 - j 1.75196
-3.18783 ~3. 60970
-0.49848 ~0.49275
-0.14310 ~0.14312

5S4




D. CONCLUSION

As a conclusion for the sensitivity analysis, we have
the following:

With respect to the eigenvalues, the pitch control

system 1is more sensitive to changes in C and C than
mEp N&p

changes in CMd and CN« ;5 and

Considering the time response, we can verify that the
angle—-of-attack 1s sensitive to all the parameters with

higher variation with CNd; the acceleration 1is more

sensitive to C and C ; the velocity has the maximum
mat N

value changed less than 10%Z with respect to all the
parameters; and the altitude 1is insensible for the
considered variations.

It 1is not necessary to emphasize the importance of this
analysis for the design of the control system, but thinking
only in the eigenvalues and comparing the results of the

first order approximation presented for Cm with those of

&p

Table III for C changed to -0.06 (aC = 0.02) we can have
msp msp

an idea of the importance of the parameter, using that

approximation.
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IV. ROBUSTNESS ANALYSIS

A. INTRODUCTION

In the previous chapter we take into consideration the
change in the eigenvalues and in the time response of the
system due to variations on the aerodynamic parameters that
take nart into the model; under the robustness analysis we
verify what we can expect of the system when it is affected
by any kind of perturbation.

The main idea is to use the robustness analysis to
design a new set of feedback gains in order to have the same
behaviar in different situations and/or environments which
act as perturbations to our missile.

In classical frequency domain, for single-input single-
output systems(SIS0), a robust design can be achieved using
Bode, Nyquist or Nichols plots. With these techniques it is
possible to define gains that give us gain and phase margins
for a "robust" system. For multi-input multi-output systems
(MIMO), the classical techniques are no longer valid.

Taking this in consideration, we have analysed the
robustness of the original design by means of the minimum
singular value of the return difference matrix for different
frequencies and we will use the same technique to improve

the control system.
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In order to show why we are applying this technique, we
start with the Nyquist Criterion for a SISO system and
extend the analysis to a MIMO system, using the minimum
singular value theory, as explained by Lehtomaki, Sandell

and Athans in [Ref.é&1].

B. THE NYQUIST CRITERION
Let‘'s take in consideration the SIS0 system represented

in Figure IV.1.

Figure IV.1 Single-Input Single-Output System

where G(s) includes the controller and plant dynamics

with unity feedback .

The Nyquist criterion states that if the open loop
transfer function G(s) does not have any pole in the right
half s plane, then the locus of G(s) will not encircle the
point (-1,0) in the Nyquist plot, where jw is substituted
for s and the axes represent the real (Re) and imaginary

(Im) parts of G(jw) for various frequencies,
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A Nyquist Plot is given in Figure IV.2 and it can be
used to design feedback gains that ensure a robust system.
The measure of the system stability are Gain and Phase

margin obtained from the Figure, as indicated.

ANnGUw)

- __— perturbed

GM ;/ system

——

p

A P Re

\ Gljw)

]/+GO®”

Figure IV.2 Nyquist plot - Stable System

The Phase Margin (PM) is the additional phase lag at the
gain crossover frequency required to bring the system to the
limit of instability and the Gain Margin (GM) is the

reciprocal of the magnitude [G(jw)| at the frequency where
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the phase angle is -1800. The gain crossover frequency is
the frequency at which |B(jw)| is unity.

The Phase and Gain margins are a measure of how close a
polar plot is to the -1 + jO point.

Considering the system subject to additive perturbation,

as we have in the diagram of Figure IV.3.

|
¥
@
n
¥

Figure IV.3 Additive Perturbation

In order to have the system stable, despite the
perturbation, we need
lAG(jw) | < |1 + B(jiw) | (Iv.1)
As we can see in Fiqure IV.2, this condition ensures a
stable system.
This idea can be extended to MIMO problems through the
use of matrix norms and of applying the Multivariable

Nyquist Theorem.
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C. MULTI-INPUT MULTI-OUTPUT SYSTEM

The generalization of the SISO theory discussed in the
previous section has been made for the MIMO problem.

Let’'s consider our system as represented in chapter III

and apply the transformation in order to have the open loop

transfer function between input and output.

Xx =Ax + Bu (IV.2)
Applying Laplace Transform to the equation (IV.2), we

have

sX = AX + BU (IV.3)
where X and U represent the Laplace Transform of 8§ and

u(t), respectively.Taking the value of X in equation (IV.1)

X = [sI - A1 'B U (IV.4)
As Y =C X (IV.S)
We have Y =C tsI ~ A1 !B (IV.4)
U

This transfer function corresponds to G(s) in Figure

V. 4.
0 G(s) :
\{/— -
His)

Figure IV.4 Return Difference

4N
[y

Y
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From Figure 1IV.4 it is possible to define the "Return
Difference Matrix" (Kwakernaak and Sivan, [Ref.61) that
carresponds to opening the 1loop at a given point and
connecting an external input variable at this point; for

example, at point 1. Assuming the input u as zero, we have:

Y, (s) = - B(s) H(s) V (s) (IV.S)
where V (s) corresponds to the new input variable and
Yi(s) the “"returned variable".
The difference between Yz(s) and V(s) is
Vis) - ¥ (s) =1L I + G(s)H(s)1 V(s) (IV.&)

The matrix I + G(s)YH(s) is defined as the "Returned
Difference Matrix", with G(s) equal to

G(s) = CLsI - A1 'B (IV.7)

As explained by Lehtomaki,Sandell and Athans in [Ref.71,
the Multivariable Nyquist Theorem is derived from the

relationship

detlI + G(s)H(S)] = Pcl (s) (IV.?
Fol (s)
where #cl (s) = det(sl - A) corresponds to the

characteristic polynomial of the open loop transfer function
and $ol (s) = det(sl - A + BF) corresponds to the
characteristic polynomial of the closed 1loop transfer

function from the system represented in Figure IV.4.
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The multivariable Nyquist theorem which requires that a
closed loop stable system have the same number of
counterclockwise encirclements of the origin by the locus of
the determinant of I + G(s)H(s) as the number of open loop
poles that are unstable.

I+ I + G(s)H(s) is quasi—-singular, a small change in G
may make the matrix singular ;j this causes the detll +
G(s)H(s)] to become zera and the Nyquist encirclement count
to change indicating an unstable system.

Basically,in order to analyse the robustness of the
system we have to verify how close the return difference
matrix is to being singular as a function of frequency (w).

The natural measurement of the singularity is the
minimum "“singular value", since this is the tightest norm.

The singular value of a matrix M is defined as

5, 0= O ¢ MMy 172 (IV.10)

MH represents the conjugate transpose matrix of a

generic M matrix and Ai any eigenvalue of the product of MH

times M.

If the minimum singular value 1is close to zero the
matrix is quasi-singular and the system is not raobust.

If one assumes

6(I + G(jwIH(jwW)) > o (IV.11)
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then it can be shown [Ref. 71 that the gain and phase
margins for the system may be represented by equations

(IV.12) and (IV.13), i. e.,

Gain margin: GM = 1 (IV.12)
1 + «
]
Phase margin: PM = + cos '[1 - %01 (1V.13)
2

Universal gain and phase margins curves, presented by
Gordon f[Ref. B8] and repeated in Figure IV.5 allow the
designer to pick a singular value that corresponds to a
desired stability margin for the system to be designed.

From singular value plots the we will be able to
identify the critical frequencies or range of frequencies
where the singular value is below the chosen level from the

Figure IV.S5.
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D. SINGULAR VALUE ANALYSIS

Using the program developed by Gordon [Ref.81, with
small changes to make it compatible with the size of our
system and to input the matrices more easily, we calculate
the minimum singular value of the return difference natrix,
with the frequency varying from O to S50 rad/sec.

The program utilizes the IMSL subroutines to generate
the return difference matrix as well as to made the singular
value decomposition, given the minimum singular value for
different frequencies.

The return difference matrix depends on the point where
we open the loop represented in Figure IV.S. or the
explained case, considering point 1, we have the "output”
difference matrix, that corresponds to I + G(s)H(s); if the
loop 1s open at point 2 we have the "input" case and the
return difference matrix will be I + H(s)G(s).

From the Figure IV.5 we choose as reference, for our

analysis, the minimum singular value as 0.6 that gives us a

phase margin of about 350 to characterize a "robust" system.
The minimum input singular value is plotted 1in Figure
IV.6.
It shows that the system 1is robust, except for

frequencies between 0.6 and 5.0 rad/sec.
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The results related to the minimum output singular value
are in Figure IV.7 and the robustness of the system is poor
from O to 18 rad/sec.

Those results indicate that the behavior of the system
under perturbations should present problem for frequencies
below 10 rad/sec.

To confirm this expectation, we have plotted the BODE
diagram (magnitude) +For the closed loop system considering
the angle-of-attack and altitude with respect to both inputs
(acceleration and desired altitude).

The diagrams are on Figures IV.8 to IV.11, where can see
the attenuation at the low frequencies indicating that we
can not expect good response at those frequencies and one
could further expect problems with robustness as is evident
from the singular value plots.

On the next chapter we try to .mprove the system
designing a new set of feedback gains, in order to have a

robust system.
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V. IMPROVING THE DESIGN

Under this chapter we try to improve the system by
calculating new feedback gains that will yield a more robust

system, taking 1into consideration the results indicated in

Figures IV.6 and IV.7.

The POP’ AR program, developed by Gordon {(Ref.8] will be
used. A numerical optimization technique is applied in arder
to increase the minimum singular value of the considered
return difference matrix, therefore, a resultant robustness
of the design.

The development in this chapter will be preceded by
comments on numerical optimization and a description of the

computer program.

A. OPTIMIZATION

The oaptimization was accomplished by means of the
Automated Design Synthesis Program (ADS) developed by
Vanderplaats [Ref.?1].

The purpose of ADS as of others numerical optimization
routines 1is to find the "best" possible solution for the
problem, starting <from an initial set of variables and
updating the design iteractively. The problems can develop

in convergence of the method and 1n the computer time
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needed. If the problem has multiple solutions, the
optimization does not always lead to the absolute aptimum.

The ADS program 1is designed as a black box optimizer
which allows the wuser to choose combinations of one
dimensional search, optimization algorithm and strategy.

ADS 1s used as a subroutine and the parameters that
correspond to the different applications are chosen by the
user, as explained in [Ref.<91].

The preferred method used in the ADS applications is
referred to as Sequential Unconstrained Minimization
Techniques and can be considered as a method that starts
with an objective function and the constrains combined into
an augmented abjective function and then minimizing this
function as if the problem was unconstrained.

ADS employs penalty function techniques as well as an
Augmented Lagrange Multiplier.

As presented in (Ref.81, the iteration between the
user ‘s program and the ADS routine can be represented by the
block diagram of Figure V.1; where the "info" parameter is
used as a "flag" for a dialogue between the user and the ADS
routines.

The details for utilization of ADS are presented by

Vanderplats in [Ref.8].
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B. POPLAR PROGRAM

The Gordon’'s program has the capability of calculating
the feedback gains that improve the response of the system
either by pole placement and/or by increasing the minimum
sinqular value of the return difference matrix.

The main objective is to improve the robustness by
increasing the minimum singular value above a desired level
chosen from the universal curve reproduced in Figure IV.5.

"Optimum" values of the feedback are calculated by

minimization of an Objective function whose pale placement

part 1s
1
0BJ =) AR-xR)’Jf Cap = A )
- di i di i
i=1
where
AR - real part of the desired eigenvalue ij;
di
XR -~ real part of the computed eigenvalue;
i
XI - imaginary part of the desired eigenvalue 1;
di
AI - imaginary part of the computed eigenvalue 1ij;

and, for the minimum singular value optimization, we

have

N0 . 2
oBJ =4L { max [ O , 5, — 8 (iw,p) 1 3

3

where 5y indicates the desired mirniimum singular value

and s is the minimum singular value at a certain frequency.
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The optimization procedure changes the feedback gains
until the minimum singular value is raised to the desired
level.

The pole placement and robustness program calculates the
return difference matrix to be considered, working in the
complex space (as the analysis is conducted in the frequency
domain) and the objective functions, calling the ADS routine
to make the optimization.

Input’'s for the program are the matrices of the state
representation of our missile ( A , B , C and F) ,where the
observation matrix (C) was specified as Identity because we
are assuming all the states are observable as well as
controllable.

Other i1nputs are the desired minimum singular value,
desired pole locations and frequency interval to be
considered.

In our application of POPLAR the initial values of the
feedback gains are those of the original system and the
parameters for application of the ADS program are:

Strategy - Augmented Lagrange multiplier;

Optimizer -~ BFGS variable metric method for unconstrained
minimization;

One-Dimensional Search - Polynomial interpolation.
Two situations will be considered; the INPUT - minimum
singular value, where the return difference matrix is I + HG
and OUTPUT-minimum singular value with I + GH as the return

difference matrix.
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C. INPUT - MINIMUM SINGULAR VALUE

The program was first run to improve the minimum
singular value for the input situation within the same
interval of frequencies used in Chapter IV.

Due tao the large CPU time involved, the program was run
far the <critical band of frequencies and the result
evaluated for the complete interval.

The minimum singular value taken as reference from the

Universal curve was 0.6 that implies a phase margin of 350.

We have an objective function taking into consideration
the improvement of the minimum singular value as well as a
part corresponding to the pole placement. The main goal is
to improve the singular value but with a solution such that
the poles are in paositions where the time response satisfies
the requirements.

The weight of the pole placement part was considered as
10% of the singular value part.

The program was started considering only part of the
feedback matrix as free parameters, increasing this number
until a reasonable solution was found.

The best solution was found keeping the original
feedback gains and calculating gains to feedback all tr=
other states to generate the commanded acceleration.

The computer output of the best solution with the

corresponding inputs is given in Appendix B.
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The feedback gains that improve the robustness of the

system are the following

[ 0.04 -1.15 0.03 -1.7 -9.07 0.32 7.07 0.049 0.985 1.4 ]
F =

O 0] 0 o) 0 o) 0 0 o) 0

The plot of the minimum singular value for different
frequencies 1is given in the Figure V.2, along with the
values for the original system.

As we can see the minimum singular value was increased
in the critical values of frequency with the minimum

changing from 0.40 to 0.63 that indicates an improvement in

the phase margin from 20o to 350. Also the bandwidth where
the system was less robust was changed from 5.0 rad/sec to
approximately 1.0 rad/sec.

The robustness of the control system for all the
considered frequencies is better, arriving close to 0.9 with
a considerable improvement at low frequencies.

Using the software Controls, the time response was
plotted in Figure V.3.

The maximum and minimum values of the angle-of-attack
are smaller than those of the original system; the maximum
acceleration and velocity are slightly lower and an
undershoot of about 107 appears on the altitude, that could

be a problem in some flight conditions.
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We now turn to a consideration of the output return
difference matrix although this 1is less important from a

practical viewpoint.
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D. OUTPUT - MINIMUM SINGULAR VALUE

In the Figure V.4 we have plotted the output minimum
singular values that correspond to the run where the input
singular values were improved, as well as the original
values.

As a considerable degradation of the output singular
values was evident, we try, in the last part of this work,
to arrive to a situation where the system could be
reasonable robust in both cases, increasing the output
singular value even with some reduction at the input
situation.

After several runs of the program, using different
combinations of optimization techniques with different
starting points, it was verified that due to the
characteristics of the plant, that increases in the input
singular values resulted in decreases in the output
situation.

In order to obtain some improvement, an effort was made
to modifty the system.

The first step was to look at the controllability matrix
of our model, represented by

1.835632D-01 4.9481468D+02
2.7256464D+13 -2.690449D+13
2.725664D+13 -2.690449D+13
2.861121D+00 -2.822009D+00

2.201811D+01 2.171710D+01
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-6.781791D+00 6.689111D+00
-2.286975D+00 2.255563D+00
9.855433D+00 -9.719614D+00
-1.508382D+01 1.487685D+01
4.905487D-01 -4.264398D-01

As we can verify, all the elements are non zero, this
means that the poles can placed at any desired position; but
a close 1look at the 2nd and 3th rows indicates very high
order numbers compared to the others. This situation
generates some numerical difficulties in pole placement.

Using engineering judgement, we have to define what kind
of changes have to be made for achieving a more robust
system.

First we try tao get a balanced A-matrix by changing
units, 1i. e., the angles will be in radians instead of
degrees and the pitch angular rate in radians per second
instead of degrees per second. Despite some reduction on the
numbers was not possible to arrive to a satisfactory
solution.

More positive effect was obtained by adding the effect
of the angle—of-attack in the controller (see Figure II.3).

As the original system has the output singular values
higher than 0.5 +for frequencies above 10 rad/sec, we have
kept the original feedback gains and calculated gains to
feedback only the angle—-of-attack, pitch rate and commanded

actuator.
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The gains are the following:

0 o 0 0.037 0.027 0 =0.02 0.049 0.986 1.404

0 0 ) ) 0 0] o) 0O 0 0

The result is presented in Figure V.5, compared with the
original singular values and those from the improvement in
the input case.

The output singular values, compared with the original
was slightly improved for frequencies below 5.0 rad/sec.

Resultant input singular values are plotted in Figure
V.6, and they are lower than those from the improvement in
the input situation but a little higher than the original.

The time response were practically unchanged with
respect to the original model and it is presented in Figure
vV.7.

Further analysis is needed to obtain a solution with

high output singular values.
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VI. CONCLUSICNS

The sensitivity analysis based in the change 1in
eigenvalues represents an important role in the design.

As was demonstrated for the studied missile i+s behavior
corresponds to a system insensitive to the variation of the
considered aerodynamic parameters.

The analysis gives a good indication of what parameters
have to be precisely determined.

The robustness analysis also demonstrated how useful the
singular value analysis is as an auxiliary tool for the
designer.

Singuiar value analysis 1ndicates that the system is
robust to input perturbations but is deficient in robustness
to output perturbations.

The physical nature of the problem indicates that the
prime concern should be with respect to the input
perturbations; the output perturbations are of minor concern
but should be kept in mind if unusual conditions should be
encountered by the missile.

On the MIMO design a commomly used method is the Linear
Quadratic analysis where the performance levels are reached
by adjusting weighting terms in the "cost" function, but the

results of that method, for non-diagonal R matrices, do not

necessarily imply a robust system. Using the return




difference matrix we can improve the robustness of the
design.

One advantage of this procedure i1s that it permits a
high 1level of interaction between the system and the
designer.

Further problems of a computer nature (i.e., large CPU
time) are encountered with a high number of states. Analysis
must be confined to a small frequency range of low singular
values and the complete system return matrix singqular value
are calculated with the determined feedback gains.

One aspect that should be considered in future
development 1s to improve the cpu time used when handle a

system with a high number of states.
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APPENDIX A
MISSILE DATA
Under this Appendix the missile sizing, mass properties
and aerodynamic parameters are presented as given by Arrow
[Ref.11, including the figures.
The missile is 1/6 scale of the actual circular missile
configuration and 1is reproduced in Figure A.1. It is tail

controlled using four identical control surfaces located

with +30° dihedral.

A. GEOMETRY AND MASS PROPERTIES

In table VI we have the size and mass properties, with
the respactive values, used for development of the state
equations.

Only the uncoupled pitch channel was considered,

assuming no roll movement.

Table VI

MISSILE GEOMETRY AND MASS PROPERTIES

Weight W 2525 lbs
Length 1 168 in
Diameter d 24 in
Reference Area for Coeff. S T ft2
Moment of Inertia about vy Iyy 804 51ug-—ft2
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B. AUTOPILOT/AIRFRAME

Figure A.2 shows the block diagram of the autopilot used
to develop the maodel of the pitch control channel of the
missile.

The state equations that correspond to the autopilot are

the follawing:

§1= -150.0 x  + 150.0 n,

Xx = 1.353 x_  + X, = 1.353 nzc

2 1
X,= —6.572 x - 5.0 X, + 6.572 9
X,= —44.3316 Xxg = 59.11 x
Xg= x, — 0.1482 xo + 0.0395 x_
Xx,= —188.4 x_ + 188.4 x5
X = —0.4608 x, = 2.231 x ~ 0.3406 x + 2.231 x

- 15.095 Xg = 20.13 x, -~ 0.1430 X, * 0.4608 "%

The input for the autopilot is the commanded

acceleration --—- g_ .
rd=

The values related to the aerodynamic are the following:

Cma = ~ 0.06
Cmap = - 0.08
CN« = 0.15
CNSP = 0.04
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Dynamic Pressure - q ——~——=——=—- 1650 lb/ft2

Velocity -V e 3825.46 ft/sec
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APPENDIX B
POPLAR PROGRAM
The computer output where the improvement in the input

singular value was found is listed below.

PILE: LATIFRAOS OUT Al PAGE se0)

CLCEC AUN 8 3881 233>

MMAXe  9,70000 INIT PREQe  4.70000 FREQ STEPs  9.10000

HELOMT la G.10000MEIONT 2 @.008COMEIONT 3 0.00008

SVHIN]e 0.40000 IVNINO®  §.50000 RJe  9.10000 1DGe L]

®es THE A PLANT MATRIX mns

~130.00000  9.00000  9.00008  #.00000vncuscansna703,78003 §.00000 #.80000
0.00008 9.00000
1.33318  9.00000  1.00000 9,00000 0.90000 9.00000 6.00000 9.00000
0.00c00  0.0000¢
=6.37200  0.00000 -5.00000 9.60000 0.80000 €.00000 0.00000 ¢.00000
0.00000 #.00000
0.00000  €.00008  $,00000 0.00008 ~44.33162 ~5%,11000 0.00008 6.90008
0.00000 9.0000¢
0.00000 9.0000%  9.00008 1.00000 ~0.14320 <=0,037350 9.00008 ¢.00000
0.000¢0 9.00000
0.00003  9.00000  0.00000 0.00000 @.00000-189.39999 109.39999  ¢.00008
0.00000  #.00008
~0.46060 ~2.23000 -6.34058 2.25000 ~[S.€9050 -20.13000 ~4.14500 ¢.00009
9.80000 #.00000
0.00008  £.00006  0.00000  0.00008  0.00008  £.08008  £.00000 -30.00000
=493.60000 0.00000
0.00000 9.00000  4.00008  0.00000  0.00000 0,00000 0.00000 ¢,00000
9.00000 1.00000
€.00000 9.00000  0.50000 0.00000 ~17.44400 -4.70300 9.00000 0.00800
0.00000  0.0000¢

oss Tril § CONTROL INPUT MATRIXN ane

e.00000  9.80000
~1.35310  1,33440
4.37200 ~$.48100
#.00000 #.80000
0.59000  9.90000
0.00000  9.00000
0.44080 ~9,45430
0.00000 493.00000
0.00009 8.00000
9.00000 ¢, 40008

#sd THME C OBSCAVATION MATAIX ses

9.80000 0.00000  0.00000 0.00000 9.00000
0,00000 0.000080  0.00000  9.80000  0.90000
1. 00008 s.00008  0.00000 e.80000
.. 00000 €.00000  5.00000 040000 0.00000
p.00000 1.00000 0. 00000 o.80000




FILE: LATIFRO® OUT

0.00000
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8.00000
0.00000
0.0c00e
e.00000
©.00000
1.00000
0.00000
c.00009

ses THE

0.00000
0.98413
0.00000
0.00000

e.00000
0.00000
0.00008
9.00008

AL

P PEEDBACK MATAIX san

$.00000  0.00008
1.40440
¢.%0008 0.01000
©¢.00000

wus THE ORDERED COMPLEX EIGENVALUES (INPUT)

-157.80000
-159.00000
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-8.60000
-8.00008
=-7.00009
-3.00000
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0.00000 =1.06808
e.00130 9.8413%
8.90000 $.29377
-4,23208 -4,43302
€.00000 -r.23122
33041 0,72477
0.58700
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1.32¢00
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